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The cellular microstructure of softwoods such as spruce may be approximated as an irregular
two-dimensional honeycomb. The nine macroscopic elastic constants of the wood, regarded as
an orthotropic continuum, are governed by the geometric configuration of this honeycomb,
together with the intrinsic material properties of the cell walls. Simple modelling is developed to
allow all nine of these constants to be estimated from detailed microscopic measurements of the
cell geometry, using assumed values for the cell-wall properties. Account is taken both of the
cell-to-cell variations in growth and of the larger-scale modulation of cell properties in the annual
growth rings. Results based on study of four samples of Norway spruce show very encouraging
agreement with published measurements, and allow the relative importance of various effects to

be assessed quantitatively.

1. Introduction

The cellular microstructure of wood makes it a mem-
ber of the large family of foams and honeycombs. For
all such materials, the macroscopic elastic constants
are governed by the intrinsic elastic behaviour of the
matrix material and by the geometric configuration of
the microstructure [1]. To a large extent, these two
factors can be studied separately. In this paper we
investigate the contribution of the microstructure to
the macroscopic elasticity of softwoods, taking the
cell-wall elastic constants as parameters of the theory.
Other studies give guidance on the possible values of
these parameters, and on the origin of those values
in the ultrastructure of the multi-layer composite of
cellulose, hemicellulose and lignin which is the cell
wall [2].

The main motivation for this study comes from the
requirements of wood selection for the soundboards of
musical instruments. The wood traditionally preferred
for this purpose is Norway spruce (Picea abies), al-
though certain other softwood species with generally
similar properties are sometimes used. Makers of vi-
olins, guitars and so on are extremely particular about
the choice, cut and seasoning of spruce for sound-
boards. One would like to understand their require-
ments in quantitative terms, so as to give guidance in
the process of quality control. Also, as good spruce
becomes scarce and thus expensive, one would like
a basis for deciding which other materials, be they
other wood species or man-made composites, might
make possible alternatives.

Elastic constants are not the only quantities rel-
evant to wood selection for musical instruments. In-
ternal damping is also of great importance. Although
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nothing will be said explicitly about damping in this
paper, it is hoped that the understanding of the mi-
cromechanics of deformation which comes from
a study of elasticity could in future help the study of
damping. After all, once one knows where the elastic
strain energy is stored for a given macroscopic de-
formation, it is straightforward in principle to model
the dissipation rate of that energy. But cell-wall damp-
ing properties are even less well-understood than cell-
wall elastic properties, so a quantitative study of this
nature is not yet possible.

One’s first thought might be to approach the wood-
selection problem by a programme of measurements.
Surely it would be possible to measure relevant prop-
erties of a wide range of wood samples and compare
the results with the expressed preferences of instru-
ment makers? Some work of this nature has indeed
been carried out [3, 4], but it is difficult to do this job
thoroughly. The main problem is that even the sim-
plest reasonable idealization of wood as an elastic
continuum involves a large number of independent
elastic constants to be measured. The three obvious
principal directions in the tree have distinct proper-
ties. These directions are conventionally denoted L for
longitudinal (vertical in the growing tree), R for radial
and T for transverse (tangential to the annual rings in
a horizontal plane). If we can ignore the curvature of
the annual growth rings by imagining a large tree,
then, at least approximately, the wood possesses
a mirror symmetry in each of the planes LR, LT and
RT. Since for a straight-growing tree these three
planes are mutually perpendicular, this is an ortho-
rhombic or orthotropic symmetry, and standard lin-
ear-elasticity theory tells us that there will be nine
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independent elastic constants [5]. A typical choice for
the purposes of description would be the three
Young’s moduli in the principal directions, E; , Ex and
E, the three shear moduli in the principal planes, Gix,
Gt and Ggr, and three of the Poisson’s ratios in the
principal planes. We will use the notation vy for the
Poisson contraction in the R direction given a pure
tensile stress in the L direction, and similarly for other
combinations of directions. It is obvious that six Pois-
son’s ratios of this kind may be defined, but they are
not all independent. A standard reciprocal theorem
[5] requires that, for example,

Eivee = Egrvig 1)

We thus have a set of nine parameters which are
sufficient to characterize the linear elasticity of a given
sample.

To measure values of all nine constants for a given
wood sample is a difficult undertaking [6]. There are
a few complete sets of data from the days when spruce
was of interest in aircraft construction [7, 8], and there
is some interesting recent work investigating the use of
ultrasonic methods for all nine constants [9], but
nearly all the published data gives only a restricted
subset. Most often, only E;, the long-grain stiffness,
and Eg, the cross-grain stiffness, are quoted. (Instru-
ment makers prefer wood cut in the LR plane, so-
called quarter-cut wood, so the T direction runs nor-
mal to the surface of the finished soundboard.)

The hope behind the present study is that this
daunting measurement task might be reduced if we
understood how the values of the nine constants arise
from the internal structure of the material. It is at least
conceivable that the relevant variations in growth
from tree to tree of a given species might not actually
involve very many free parameters, so that the induced
variations in the macroscopic elastic constants are
correlated in some way of which we might take ad-
vantage. These underlying growth variations might
affect the cell-wall elasticity or the cell geometry, but,
in either case, to take advantage of any knowledge we
would need to know how the cell-wall behaviour is
linked to the macroscopic elasticity by the particular
pattern of cell growth. Such understanding might also
shed light on other questions, such as what influence
on elastic behaviour should be expected from particu-
lar growth anomalies in a tree, or what effects might
arise from changing the wood microstructure by, for
example, permanent deformation by bending the
wood to a desired shape.

The cellular structure of spruce is essentially quite
simple [10]. The vast majority of the cells are tra-
cheids, which run axially in the tree (in the L direction).
They are needle shaped, with length-to-diameter ra-
tios of the order of 15. The tracheids fit together to
form an irregular honeycomb in the RT plane, whose
properties are modulated in the radial direction by the
annual growth rings. Spring growth produces large-
diameter tracheids with thin walls, but as the growing
season comes towards its close the cells become pro-
gressively smaller in radial extent and thicker-walled,
until growth stops. The following season growth re-
sumes, giving an abrupt change of structure to the

large, thin-walled spring-wood cells. The only cells in
spruce which do not run axially form the rays. Ray
cells are less substantial than tracheids, and they are
aligned radially, cutting across the honeycomb of tra-
cheids. One ray consists of a stack of about ten cells, on
top of each other in the L direction, and only a single
cell thick in the T direction. In Norway spruce, ray
cells make up only about 2% of the total. In the living
tree these cells transport fluids, but in well-seasoned
wood, as studied here, they are empty. The cell walls
form a honeycomb structure whose properties give
wood its special attributes, both desirable and unde-
sirable, as a material.

Efforts to model this cellular structure to find its
influence on the elastic properties go back to Price
f11], who approximated the tracheid honeycomb by
a close-packed array of circular tubes. This allowed
him to explain immediately the very high anisotropy
between E; and Eg or Er. To stretch the wood in the
L direction requires extension in the cell walls, but
a stretch in the R or T directions can be achieved by
bending the walls without extension. Since they are
thin, the associated macroscopic stiffness is much
lower. More recently, Ashby and Gibson [12] ob-
tained similar results from a rather more accurate
model, in which the tracheids were represented by
a two-dimensional honeycomb whose cross-section
takes the form of a regular array of hexagons.

The aim of the present study is to proceed one step
beyond these previous investigations, by taking some
account of the non-uniformity of the cell structure.
This term covers the cell-by-cell variations of growth,
and also the systematic modulation of properties con-
sequent on the annual ring structure. An effort has
been made to calculate all nine of the elastic constants
for four spruce samples, based on a detailed study of
the microstructure. Values for the cell-wall elastic con-
stants have been taken from the literature, but in some
cases we will argue that these values may not be
accurate, at least for our samples.

One specific issue to be examined is the source of
anisotropy between Ey and E;. Typical measured
values suggest that Ex/E; is about 1.7 [7, 8]. Three
different effects can be identified which contribute to
this anisotropy, and we shall try to assess their relative
importance. All three have been mentioned in pre-
vious literature. First, Price [11] considered the role of
the annual rings. It is intuitively clear that the relative-
ly dense, stiff layers of summer wood will reduce the
ratio Ex: Eg and, if this were the only factor, would
make this ratio lower than unity. Compression can
occur in the R direction by bending only thin cell walls
of the spring wood, but to achieve compression in the
T direction the summer wood and spring wood must
both be compressed. Put another way, the different
properties of the spring wood and summer wood ap-
pear in series for R-direction deformation, but in par-
allel for T-direction deformation. Thus different aver-
ages must be taken in the two cases, leading to differ-
ent macroscopic stiffnesses.

Clearly some other effect must compensate for this
one, since it operates in the wrong direction. One such
effect is the role of ray cells. Barkas [13] pointed out
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Figure 1 Three typical conﬁgurafions of hexagonal honeycomb as
analysed by Ashby and Gibson [1, 12, 14].

)

that the radial ray cells will contribute additional
stiffness in the R direction, with negligible influence on
the T direction. The mechanism is essentially the same
as that outlined above for the E; : Eg anisotropy. The
third influence on Eg: E is the effect of cell geometry
in the RT plane, as discussed by Ashby and Gibson
[1, 12]. Their theory treated any regular tesselation of
hexagons, some examples being illustrated in Fig. 1.
Most of these configurations will lead to anisotropy in
the RT plane, the most extreme case being shown in
Fig. 1b. Here, it is possible to compress the material in
one direction by cell-wall bending, but the walls are all
aligned in the other direction so that macroscopic
compression can only be achieved by local cell-wall
compression. Obviously, a large anisotropy of
Young’s modulus will result.

2. Determination of the elastic
constants

2.1. Preliminaries

The cell wall is itself an anisotropic material, built up

as a multi-layered composite of cellulose, hemicel-
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lulose and lignin [2, 10]. It should be noted that when
we refer here to a cell wall, we mean one structural unit
of the model as an irregular honeycomb. This unit
actually consists of the walls” of two adjacent cells,
together with the layer of lignin holding them to-
gether. This symmetric back-to-back structure makes
it reasonable to assume that the whole unit is two-
dimensionally orthotropic, so that its in-plane elastic
properties may be specified by four elastic constants:
two Young’s moduli, one in-plane Poisson’s ratio and
the in-plane shear modulus. When treating the very
thick-walled summer-wood cells, the Poisson’s ratios
relating to contraction through the thickness of the
wall resulting from in-plane extension will also play
a small role in the resuits.

Values for all these elastic constants can be found in
the literature, although some values are much more
certain than others. To distinguish cell-wall constants
from macroscopic constants for the wood, lower case
letters will be used to indicate directions; thus E; will
denote the longitudinal Young’s modulus of the cell
wall, E, the transverse Young’s modulus (which of
course might be oriented anywhere in the RT plane in
the wood), Gy the in-plane shear modulus, v, the
transverse Poisson contraction given an axial stretch,
and (somewhat inconsistently) v,, the Poisson contrac-
tion through the thickness of the wall given a trans-
verse in-plane stretch. Typical values cited for these
constants, together with the density p, of the solid
cell-wall substance, are given in Table L. (Staypak is
a material made by compressing wood under high
temperature and pressure, which has a final density
nearly as high as the value cited for the cell-wall
substance. It gives the only direct measurements avail-
able for Poisson’s ratios.) Table I also gives suggested
alternative values for some of the cell-wall constants
based on this study; these values will be discussed in
Section 3.

We shall make extensive use of the honeycomb
model of Ashby and Gibson, and of extensions to it
using similar approximations of simple beam theory.
It is useful to begin by summarizing the main results.
For a unit cell, the necessary geometric notation is
defined in Fig. 2a. The expressions given by Ashby
et al. for the in-plane elastic constants are

E,.d*cos 0

E. =
* w3(h/w + sin 8)sin® @’
E = E.d?(h/w + sin0)
v w? cos3 0
cos*0

Vo = (hjw + sin0)sin 8’

(h/w + sin 0)sin O
cos2 0
E.d3(h/w + sin®)
Gy = — 2 @
w3 (h/w)?* 2h/w + 1)cos 8

These equations assume a matrix with a Young’s
modulus E_, and a deformation involving bending
only (with no compression or shear). The coordinate
directions are labelled x and y. These will correspond,




TABLE 1 Values of cell-wall properties from the literature

Property  Value from Source Suggested
literature value
Ps 1500 kgm~3 [16], [2] 1500 kgm ™3
E, 35GPa [15] 40-50 GPa
E, 10 GPa [15] 9 GPa
Gy 2.6 GPa [1] 3.5-4 GPa
Vi 0.4 [27 (from Staypak) 0.5
Vu 0.15 [2] (from Staypak) 0.1
Vir 0.6 [2] (from Staypak) 0.6
—-( -—
h
0
/
(@
N N ™™ N ™ N
) S O

Figure 2(a) One structural unit of a honeycomb of the type shown
in Fig. 1, with definitions of some geometric notation; (b) an
example of a periodic honeycomb built from irregular hexagonal
cells; (c) one structural unit of the honeycomb shown in (b), with the
geometric parameters marked.

broadly, to the directions R and T, respectively.
Gibson [14] has also described extensions of this
theory to allow for compression and shear. A typical
result, which will be of direct interest to us, as will be
seen in the next subsection, is

E,d?cos®

where v,, is the matrix-material Poisson’s ratio. Here,
the term involving 2.4 + 1.5v,, allows for shear, while
the term involving cot? 0 allows for compression.

The first step in using this theory for actual wood
structures is to extend it to regular tesselations of
non-symmetric hexagons. Fig. 2b shows a typical
example, and Fig. 2c shows one unit from which the
whole pattern may be built by repetition. Some further
geometric notation is also defined in Fig. 2. Our pro-
cedure, at least for the analysis in the RT plane, will be
to represent the cell structure by a number of three-
pronged elements as shown in Fig. 2c, each with its
own values of the geometric parameters.

The investigation begins with scanning electron
microgaphs of the cell structure, sectioned in the RT
plane. Two examples are shown in Fig. 3a and b, one
from the spring wood, the other showing the summer
wood and the sharp transition between two seasons’
growth. Several rays can be seen crossing the micro-
graphs horizontally. The spruce for the investigation
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Figure 3 Scanning electron micrographs of the RT plane in one of
the samples of Norway spruce analysed in this study: (a) early-
spring growth; (b) the transition through the summer growth of one
annual ring. The T direction runs parallel to the annual ring and the
R direction runs approximately horizontally, the growth direction
of the tree being from left to right.
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w3(h/w + sin 0)sin® O[1 + (2.4 + 1.5v, + cot? 8)(d/w)?] 3)
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was obtained from a violin-maker’s workshop, so that
all the samples were straight grained, knot-free and
well seasoned. For each sample, a montage of micro-
graphs was prepared which allowed detailed analysis
to be carried out for a strip which was one complete
annual ring in radial extent and 15 cells wide in the
T direction. These strips each contained 500—700 cells.

The geometric parameters for each three-pronged
clement within the analysed strips were measured
from the micrographs, and entered into a computer to
facilitate the processing required. The Ashby/Gibson
theory can be used to predict the elastic properties of
each element, then appropriate averaging procedures
can be applied to aggregate the results into macro-
scopic elastic constants. The objective is not to model
the behaviour of the irregular structure with complete
accuracy, but to use approximations which capture
the main effects so that their influence may be as-
sessed.

2.2. The Young’s moduli

We first discuss the Young’s moduli in the three prin-
cipal directions. The easiest to calculate, within the
simple theory in use here, is E;. For this, we need only
find the fraction of the cross-sectional area in the
micrographs which is occupied by wood substance
rather than empty space. The value of E; is then the
cell-wall modulus E, multiplied by this fraction, since
the assumption is that axial loads are carried by com-
pressive force in all the tracheid tubes. Equivalently,
we may multiply E; by the relative density of the wood
compared with that of wood substance, provided we
neglect the ray cells which will contribute to the mass
but not to the axial load-bearing capacity.

To obtain the other two Young’s moduli, E; and
Er, requires more work. It is immediately clear from
Fig. 3 that the two cases are rather different. There is
a strong degree of cell alignment in the R direction,
whereas the cells are randomly staggered in the T di-
rection. This is a consequence of the normal pattern of
tree growth, in which each tracheid in the outermost
layer divides to produce another alongside it, forming
a new outer layer. It is reasonable to suppose that
a load in the R direction will be carried along zig-zag
lines like the one labelled R line in Fig. 4, which is
a diagrammatic version of Fig. 3a. In each line, the
deformation will involve a combination of bending
and compression in the segments of the zig-zag. The
sections of cell wall oriented in the T direction will
contribute very little to the overall stiffness, and they
will be ignored in the calculation. When we come to
calculate Er, on the other hand, a rather more artifi-
cial concept of the T lines is needed. An example is
indicated in Fig. 4. It is made up of a column of
three-pronged elements, each analogous to Fig. 2c.
A load in the T direction will be carried through the
set of such columns, by a combination of bending in
the cell walls which form part of the R lines, and
compression in the other walls.

For both cases, the same general procedure may be
followed. The lines are assumed to be free to move
independently. Any relative motion between adjacent
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Figure 4 A diagrammatic version of Fig. 3a, showing a typical
T line and a typical R line, as described in the text.

lines will be accommodated by bending and shear
deformation in the cross-links, but we expect this to
contribute very little to the overall stiffness, since in
both cases adjacent lines are generally sufficiently sim-
ilar that such relative motion will be quite slight. We
now imagine the whole sample under a uniaxial load
in the relevant direction. Each line will carry a fraction
of the applied load, which will be constant along the
line; the motion of each element will adjust itself ac-
cording to its own stiffness. The distribution of force
between the different lines, though, is governed by
a condition of equal displacement, if we imagine a test
in which the sample is compressed between flat, rigid
platens. Thus an appropriate way to combine the
stiffnesses of the individual three-pronged elements is
a combination of a series connection (along the lines)
and a parallel connection (between lines).

This procedure is readily carried through, using the
measured data on each element in a given sample. It
transpires that the strong alignment of cell walls in the
R direction leads to a considerable fraction of the load
in that direction being carried by compression rather
than bending. The corrected formula (3) is thus essential
to obtain sensible results for this case, although the
allowance for shear also included in this formula has
only a small effect, and can be omitted. In the T direc-
tion there is also some effect of compression (in the
walls running vertically in Fig. 2), but the overall
stiffness is governed primarily by bending in the other
walls, so that no great error is made by omitting it.

Note that the effect of rays is automatically included
in the analysis just described, at least up to a point.
Where a ray cell is visible in a micrograph, its wall
thickness and influence on cell alignment is included
in the measurements of individual structural elements.
The only error as a consequence of this is that we use
the transverse material properties of tracheid walls in
calculating stiffnesses from the geometric measure-
ments, whereas we should use the (presumably differ-
ent) axial material properties of ray-cell walls. But the
number of rays in spruce is so small in relation to the
number of tracheids that only a very small error will
result in the macroscopic predictions.

There is one further issue to be considered in rela-
tion to Eg and Er, which is whether the simple procedure



just described copes adequately with the thicker-
walled cells of the summer wood. The relative density
there is often around 0.5, which is more suggestive of
a solid material with inclusions than of a structure of
thin beams. The implications of this raise rather separ-
ate issues for Ex and Er. When calculating Eg, we
should consider the role of Poisson’s ratio, which
varies significantly across an annual ring. This will be
addressed in detail in the next subsection.

When the simple theory is applied to calculate Er,
a single line in the summer-wood area is predicted to
be some 10-20 times stiffer than a line in the spring-
wood area, and the summer wood contributes up to
80-90% of the total stiffness. This makes it imperative
to treat this area carefully, and not to rely on inappro-
priate approximations chosen because they work well
enough for the spring wood. A particular problem
concerns the estimation of the cell-wall thickness in
the summer wood. Careful examination of micro-
graphs reveals that the wall thickness is quite variable
in this area (a variation by a factor of two within one
wall has been observed), and that defects such as
cracks and voids are quite common (perhaps as a re-
sult of the drying during seasoning of the wood).
When such a high proportion of the load is carried by
this area of the structure, any such weak links in the
chain of transmission could produce a very significant
reduction in the overall stiffness.

For the purposes of this study, it was decided to
allow for such effects by the rather crude method of
assigning an equivalent thickness to the cell walls in the
summer-wood area when calculating stiffnesses. The
value chosen for this in the sample shown in Fig. 3 was
4.5 pm, compared with 3.1 um measured in the early-
spring wood, and 3.6 pm in the later-spring wood.
Some support for this approach, and for the values
chosen, has been obtained by two methods. First, the
pattern of deformation was observed when the sum-
mer wood was deformed dynamically inside a scan-
ning electron microscope, and the important role of
weak links was then evident. Secondly, the calcu-
lations to be described in the next section give inde-
pendent estimates of Eg, Er, vgr and vqg, which de-
pend on this choice of equivalent thickness. The recip-
rocal relation between the four quantities then gives
a check on the self-consistency of the modelling.

2.3. The RT-plane Poisson’s ratios

Of the two RT-plane Poisson’s ratios, vy is easier to
estimate than vgr. When the Ashby/Gibson theory,
suitably corrected for compression effects [14], is ap-
plied to regular honeycombs based on the individual
three-pronged elements of the spruce structure, wide
variations in Poisson’s ratio across the annual ring are
predicted. In the early-spring wood, values approach-
ing or even exceeding unity are found for wgy. (Recall
that in a two-dimensional structure there are no theor-
etical constraints on the value of Poisson’s ratio, and
any positive or negative value is possible in principle.)
In the late-spring wood, values around 0.5 are com-
mon, while, in the summer wood, values as low as 0.2
are found. These last values are probably rather too

low —the measurements on Staypak given in Table
I indicate that solid-wood substances have a Poisson’s
ratio of around 0.6 in the transverse plane. As has
already been noted, summer wood approaches the
condition of being a solid with small inclusions, so the
value from the Ashby/Gibson theory should probably
be increased. We will return to this question in Section
3, when numerical results are discussed.

In any case, the variations across the annual ring
must be allowed for. If we imagine a uniform com-
pressive strain imposed in the T direction, these vari-
ations do not cause any problem. Each layer of cells
(parallel to the rings) has an approximately uniform
structure, so they will exhibit a Poisson expansion
governed by the local properties. The overall expan-
sion is simply the sum of the expansions in each layer,
so that a reasonable estimate of vz should be ob-
tained by a simple average.

Things are different when we took at vgy. The
long-range constraints exerted by the annual-ring
structure must be allowed for in combining the indi-
vidual values to give a macroscopic result. When
a strain is imposed in the R direction, the different
layers will expand in the T direction by different
amounts, and the compromise which results must be
calculated by a different style of argument from that
used so far. Of course, we could simply use the recipro-
cal relation to evaluate v, given that we already have
estimates of vrg, Ex and Er. But it is instructive, and
a useful check on the other calculations, to find a way
to make a direct estimate of vgt.

A simple approach to this problem utilises the
variational principle for elasticity. We may model an
annual ring adequately for this purpose by a structure
with several discrete layers, each being assumed uni-
form in its properties. We may then impose a specified
total strain in the R direction, and calculate that strain
in the T direction which minimizes the total strain
energy. This calculation will also improve the estimate
of Eg discussed in the previous subsection, since it too
is influenced by the constraining effect of the layer of
dense summer wood. We have chosen to use a three-
layer model, corresponding to the early-spring wood,
late-spring wood, and summer wood. Of course, the
boundaries between these regions are not sharp in
most cases but the approximation seems to produce
reasonable results.

Consider first a homogeneous, two-dimensional, or-
thotropic material with principal axes in directions
which we may label x and y. It will have Young’s
moduli E, and E,, and Poisson’s ratios v,, and v,,.
For a deformation involving strains &, and &, along
the principal directions, with no shear, the strain en-
ergy density is [8]

. E.e; + E,e2 + 2v, E.e.8, @

‘ o
where p =1 — v,,v,,. This may be readily extended
to the three-layer model shown in Fig. 5, in which the
properties in the three regions are distinguished by
superscripts (1), (2) and (3), respectively. The lengths of
the regions, a'¥), a'® and a®, are specified as fractions
of the total length, so that a® + a® + a® = 1. We
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Region 1 Region2 Region 3
Early-spring Late-spring Summer
wood wood wood
e e it
a" a® a%

Figure 5 The three-layer model used to analyse the constraining
effect of the annual ring on motion in the RT plane. The total width
covers one annual ring.

can impose a total strain g,. We do not know a priori
how this is partitioned into the strains £, ¢? and
e in the separate regions, but we must have

aVed + a@e@ + a®Peld = ¢, (5

Since we are considering deformation in the interior of
a large specimen (compared with the ring spacing), the
transverse strain, &,, resulting from Poisson’s-ratio
effects must be the same in all regions. So the total
strain-energy density is
EPe®2 4 EPe2 4 2vDEDeDe®
ZH(I)
EQe@2 + EPe@? 4+ 2VDEPePe@
2H(2)
EQeD?2 4 EPed? + 2vPEPD e
2u®

V=

(6)

This must be minimized with respect to €', €2,

e and g,, subject to the constraint of Equation 5. In
terms of a Lagrange multiplier, A, we require that

0
—= [V + MaPed + aPe@ + aPed)] = 0

OglV
(7
aau) [V + MaPe® + aPe?d + aPeP)] = 0
el
)
66(3) [V + MaPed + aPed + aPed)] = 0
ax
©
and
6)

[V + MaW el + a®e@ + ad®e®)] = 0
(10)

These equations together with the constraint of Equa-
tion 5 give a set of five linear equations from which
/A may be eliminated, and which may then be solved for
el £, e and ¢, in terms of the specified ¢,. The
algebraic expressions are not worth displaying, but
numerical results will be given in Section 3. The de-
sired Poisson’s ratio is now given by

Oe,

— &/t (11)

since we have identified the directions in the following
way: x = R, y = T. If the results are substituted back

Ver =~
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into the strain energy density Equation 6, so that it
takes the form

vV = $E*g? (12)

then the coefficient E* is an improved estimate for Eg.

2.4. The shear moduli

The final elastic constant relating to the RT plane is
the shear modulus Ggy. This is governed by cell-wall
bending to a very good approximation, and no correc-
tion for shear or compression need be employed in
calculating the shear stiffness of each individual ele-
ment in the structure. To aggregate these into a mac-
roscopic shear modulus involves a similar procedure
to that employed for the Young’s moduli. We may
imagine imposing a shear deformation between two
platens which lie paraliel to the LR plane and which
are moved relative to one another along the R axis. It
seems reasonable to suppose that the strong alignment
of cell walls in the R direction produces something
approaching a constant-displacement constraint
along each R line. So the individual values of shear
stiffness of the cell units along each R line should be
combined by a simple arithmetic mean, then the lines
are combined by a harmonic mean.

The other two shear moduli depend on the shear
modulus of the cell-wall material. If a shear deforma-
tion is imposed in, for example, the LR plane, this will
be resisted primarily by shear deformation in the cell
walls aligned roughly in the R direction. The precise
three-dimensional pattern of response will also no
doubt involve some cell-wall bending, but the stiffness
for bending is so much smaller than for in-plane shear-
ing that one would expect it to contribute negligibly to
the macroscopic shear modulus. To produce simple
estimates for G and Gy, we will assume a rectangu-
lar geometry for the honeycomb of tracheids. This
would be stiffer than the actual structure, with its
staggered cells, so that we will overestimate the shear
modulus (for a given assumed value of the cell-wall
shear modulus). But it is hard to see how else to
proceed, since there is no theory for the three-dimen-
sional deformation of a honeycomb as simple as that
which was used earlier in two dimensions (see the
discussion (in section 4.5) by Gibson and Ashby [1]).
With this assumption, it is simple to produce estimates
for the shear stiffness of individual cells for shear in the
LR and LT planes. These could be aggregated in the
same manner described above for Gy, but since we
are calculating an upper bound based on rather crude
modelling, a simple average of individual values seems
equally valid within the expected limits of accuracy.

2.5. The remaining Poisson’s ratios

Finally, we consider the Poisson’s ratios which involve
the L direction. For an imposed compressive strain in
the L direction, the simple model we are using predicts
that the Poisson expansions in the R and T directions
will be simply that of a solid-wood substance, v;,. It
makes no difference that the structure has axial holes
in it, since each cell wall will expand by the same



factor, and the entire honeycomb pattern expands
without distortion. The only exception to this argu-
ment, within the approximations we have used
throughout, comes from the ray cells. Thesc will pro-
vide a small degree of additional stiffening of the
R direction, and perhaps reduce the Poisson expan-
sion in that direction. But, in any case, the value for
the cell-wall Poisson’s ratio is quite uncertain, and it is
far from clear that all cells should be assigned the same
value. The thicker walls of the summer-wood cells
might well have a different detailed structure of layers
and winding angles, but there is insufficient data avail-
able to incorporate any such effects in theoretical
models. By comparison with this uncertainty, the ef-
fect of stiffening by rays is probably quite minor for
spruce (with its very small proportion of ray cells).

When a compressive strain is imposed in the R or
T direction, a slightly different argument is needed.
Bending of cell walls in the RT plane produces no
strain in the L direction. The Poisson c¢xpansion is
associated entirely with the compressive component of
deformation in the RT plane, via the Poisson’s ratio
vy of the cell wall. The cell-wall compression has
already been calculated, in the course of estimating
Er and Ey. An average over all cells of the respective
Poisson ecxpansions implied by this argument yields
macroscopic estimates of vg; and vy.

3. Numerical resulits and discussion

When the estimation methods just described are ap-
plied, using the first set of cell-wall properties given in
Table I, the results for the spruce sample illustrated in
Fig. 3 (sample 1) are as listed in Table II under the
heading First cstimate. We will discuss these resuits in

relation to the values expected from earlier measure-
ments, and the comparison will lead us to suggest
modifications to the cell-wall properties. These modi-
fied values are then applied to all four spruce samples
analysed, the results are shown in Table II. It would
have been desirable to measure the elastic properties
of the actual spruce samples studied here, but that was
unfortunately not possible. So the predicted values are
compared with results given by Carrington [7]. He
gives values for five samples, and we reproduce one
typical set and the range for each constant in Table II.

We now compare the first-estimate values with Car-
rington’s results in Table II. First, we see that the
predicted value of E; is rather low. Within the theory
used here, there is a direct proportionality between
E; and the density, and we have a value of density
which lies well within Carrington’s range. We con-
clude that the factor of proportionality, which is gov-
erned by the cell-wall axial modulus, E;, must be too
small. The value 35 GPa for E, in Table I was given by
Cave [15] and it has been adopted by numerous
subsequent authors. But if we look at the relationship
between density and E; in Carrington’s data, we con-
clude that a better value for £ lies in the range
40-50 GPa.

The predicted values of Ex and E; are within Car-
rington’s range, although they are a little on the high
side. A slightly reduced value for the cell-wall trans-
verse modulus, E,, of 9 GPa gives a better fit, and we
tentatively suggest this value for our samples. The
value of Ey is based on the three-layer model described
in Section 2.3, which deserves a little more comment.
For the spruce sample studied here, the averaged
parameters determined for the three layers using the
Ashby/Gibson thcory are listed in Table III. It has

TABLE II Predicted and measured eclastic constants and density for spruce

Constant First Typical Range Best estimates
estimate results

(Carrington (7]) Sample | Sample 2 Sample 3 Sample 4
p (kgm~?) 400 430 370--500 400 400 430 440
E, (GPa) 9.3 13.5 9.9-16.6 120 11.9 129 13.2
Eg (GPa) 091 0.89 0.64-0.89 0.79 0.74 0.71 0.82
E; (GPa) 0.56 0.48 0.39-0.69 0.50 0.46 0.53 0.69
Grr (GPa) 0.027 0.032 0.022-0.037 0.027 0.029 0.050 0.042
Ggy (GPa) 1.01 0.72 0.50-0.72 0.58 0.61 0.66 0.61
Gy (GPa) 1.03 0.50 0.50-0.84 0.59 0.60 0.66 0.70
Var 0.32 0.56 0.43-0.64 0.44 0.51 0.51 0.43
Vir 0.30 0.30 0.25-0.33 0.29 0.29 0.30 027
VRL 0.057 0.030 0.018-0.031 0.028 0.030 0.024 0.035
ViR 04 045 0.36-045 04 0.4 04 04
VIL 0.047 0.019 0.013-0.023 0.019 0.019 0.013 0.027
Vit 04 0.54 0.38 0.56 0.4 04 04 04
TABLE 111 Parameters for the three-layer model
Region Length proportion, g Eq /E, E./E, VT VIR n
1 :early-spring wood 0.58 0.072 0.018 0.772 0.269 0.83
2: late-spring wood 0.30 0.098 0.044 0.529 0.231 0.85
3: summer wood 0.12 0.163 0.274 0.091 0.165 0.97
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already been noted that the Poisson’s ratio for the
summer wood (region 3) is probably too low, so the
influence of this Poissor:’s ratio on the predicted mac-
roscopic results was investigated. One useful indicator
is the accuracy with which the reciprocal relation

Exver (13)

is satisfied. We may evaluate both sides of this equa-
tion with any assumed value of vl for the summer
wood, with results as given in Table IV. This suggests
that we use a value of around 0.5 for vy in the
summer-wood area, which is quite in keeping with the
measured value from Staypak given in Table L.

The other anomalies to note in this first comparison
between theory and measurements concern the shear
moduli and Poisson’s ratios which involve the L direc-
tion. As was explained in Sections 2.4 and 2.5, these
are heavily dependent on cell-wall properties for
which reliable measurements do not exist. The values
from the literature given in Table I were determined
by data fits to macroscopic behaviour, and there is no
reason to believe them to be more accurate than the
calculations carried out here. We thus suggest that our
modelling be used to give amended values for those
properties, at least for our spruce samples. The sugges-
ted values are given in the last column of Table 1.

Using the set of cell-wall properties as amended by
the first comparison, the full set of elastic constants for
the four spruce samples studied are given in the four
final columns of Table II. The level of agreement with
Carrington’s data now seems entirely satisfactory.

One aspect of the results remains to be discussed. In
Section 1, we discussed three possible sources of an-
isotropy between E; and Egx. Now that we have
models for both constants which reproduce that an-
isotropy with reasonable accuracy, we can use them to
examine the three effects which have been suggested to
account for it. At least for our particular samples, the
answer is as follows. The annual-ring structure has an
influence of the kind described, tending to make
Et > Ex. The summer wood accounts for some 50%
of the T-direction stiffness, while occupying only
10-15% of the area. (Of course, wood with different
growth patterns might show quite different results.)

The effect of rays is rather different in detail from
the description advanced by Barkas [13]. The rays do
indeed have an effect of additional stiffening in the
R direction, but not so much from the radial align-
ment of their own walls as from the alignment they
induce in the walls of the neighbouring tracheids. In
general, an R line containing a ray is about 50-100%
stiffer than a “normal” line. Since the two sides of a ray
which is intersected in the analysed section contribute
separate lines, the net effect is that putting a ray

Egvir =

TABLE IV The effect of varying v

VS‘!)‘ Ex/E.  E{/E, g VTR vrrEr/E;  VrrEr/E,
0.1 0.091 0056 0.32 0.25 0.023 0.018
0.5 0.087 0056 044 0.29 0.025 0.025
0.8 0.086 0.056 0.52 0.32 0.028 0.029
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between two rows of tracheids yields a combined
stiffness three or four times higher than the zig-zag line
without the ray. Given the typical spacing of rays in
our specimens, we can say that perhaps 25—-50% of the
radial stiffness is due to rays in this sense. This is of
about the same order of magnitude as the effect of
annual rings in stiffening the T direction—the two
effects approximately cancel one another out in these
particular samples.

The third effect, from the geometry of the honey-
comb, is therefore of about the right magnitude to
provide the observed anisotropy, of rather less than
a factor of two. In detail, it turns out that in the spring
wood a typical R line is some 3-5 times stiffer than
a typical T line, but the local anisotropy decreases
through the late-spring wood into the summer wood,
the aggregate values giving the observed effect.

4. Conclusions

Simple predictive models have been constructed for all
the elastic constants of spruce, regarded on a macro-
scopic scale as an orthotropic (orthorhombic) con-
tinuum. At the cellular level, spruce is modelled as an
irregular honeycomb of tubes, The actual geometry
was measured for samples of 500-700 individual cells
in four separate specimens of Norway spruce. Local
elastic properties were deduced from the geometry of
each structural element, and suitable procedures were
devised for aggregating thése into macroscopic elastic
constants. In some cases these were simple averaging
procedures, but in others the long-range constraining
effect of the annual-ring structure was allowed for by
a variational calculation. The results were compared
with published measurements of the elastic constants
of spruce, and it was argued that the only significant
anomalies might result from inadequacies in the data
on the cell-wall properties. Revised values have been
suggested for certain of these properties, for our par-
ticular samples, and when these were used very satis-
factory agreement was achieved between the predic-
tions for all four samples and the previous measure-
ments.
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