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The cellular microstructure of softwoods such as spruce may be approximated as an irregular 
two-dimensional honeycomb. The nine macroscopic elastic constants of the wood, regarded as 
an orthotropic continuum, are governed by the geometric configuration of this honeycomb, 
together with the intrinsic material properties of the cell walls. Simple modelling is developed to 
allow all nine of these constants to be estimated from detailed microscopic measurements of the 
cell geometry, using assumed values for the cell-wall properties. Account is taken both of the 
cell-to-cell variations in growth and of the larger-scale modulation of cell properties in the annual 
growth rings. Results based on study of four samples of Norway spruce show very encouraging 
agreement with published measurements, and allow the relative importance of various effects to 
be assessed quantitatively. 

1. I n t r o d u c t i o n  
The cellular microstructure of wood makes it a mem- 
ber of the large family of foams and honeycombs. For 
all such materials, the macroscopic elastic constants 
are governed by the intrinsic elastic behaviour of the 
matrix material and by the geometric configuration of 
the microstructure [1]. To a large extent, these two 
factors can be studied separately. In this paper we 
investigate the contribution of the microstructure to 
the macroscopic elasticity of softwoods, taking the 
cell-wall elastic constants as parameters of the theory. 
Other studies give guidance on the possible values of 
these parameters, and on the origin of those values 
in the ultrastructure of the multi-layer composite of 
cellulose, hemicellulose and lignin which is the cell 
wall [2]. 

The main motivation for this study comes from the 
requirements of wood selection for the soundboards of 
musical instruments. The wood traditionally preferred 
for this purpose is Norway spruce (Picea abies), al- 
though certain other softwood species with generally 
similar properties are sometimes used. Makers of vi- 
olins, guitars and so on are extremely particular about 
the choice, cut and seasoning of spruce for sound- 
boards. One would like to understand their require- 
ments in quantitative terms, so as to give guidance in 
the process of quality control. Also, as good spruce 
becomes scarce and thus expensive, one would like 
a basis for deciding which other materials, be they 
other wood species or man-made composites, might 
make possible alternatives. 

Elastic constants are not the only quantities rel- 
evant to wood selection for musical instruments. In- 
ternal damping is also of great importance. Although 
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nothing will be said explicitly about damping in this 
paper, it is hoped that the understanding of the mi- 
cromechanics of deformation which comes from 
a study of elasticity could in future help the study of 
damping. After all, once one knows where the elastic 
strain energy is stored for a given macroscopic de- 
formation, it is straightforward in principle to model 
the dissipation rate of that energy. But cell-wall damp- 
ing properties are even less well-understood than cell- 
wall elastic properties, so a quantitative study of this 
nature is not yet possible. 

One's first thought might be to approach the wood- 
selection problem by a programme of measurements. 
Surely it would be possible to measure relevant prop- 
erties of a wide range of wood samples and compare 
the results with the expressed preferences of instru- 
ment makers? Some work of this nature has indeed 
been carried out [-3, 4], but it is difficult to do this job 
thoroughly. The main problem is that even the sim- 
plest reasonable idealization of wood as an elastic 
continuum involves a large number of independent 
elastic constants to be measured. The three obvious 
principal directions in the tree have distinct proper- 
ties. These directions are conventionally denoted L for 
longitudinal (vertical in the growing tree), R for radial 
and T for transverse (tangential to the annual rings in 
a horizontal plane). If we can ignore the curvature of 
the annual growth rings by imagining a large tree, 
then, at least approximately, the wood possesses 
a mirror symmetry in each of the planes LR, LT and 
RT. Since for a straight-growing tree these three 
planes are mutually perpendicular, this is an ortho- 
rhombic or orthotropic symmetry, and standard lin- 
ear-elasticity theory tells us that there will be nine 
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independent elastic constants [5]. A typical choice for 
the purposes of description would be the three 
Young's moduli in the principal directions, EL, ER and 
E-r, the three shear moduli in the principal planes, GLR, 
GLT and GRT, and three of the Poisson's ratios in the 
principal planes. We will use the notation VLR for the 
Poisson contraction in the R direction given a pure 
tensile stress in the L direction, and similarly for other 
combinations of directions. It is obvious that six Pois- 
son's ratios of this kind may be defined, but they are 
not all independent. A standard reciprocal theorem 
[5] requires that, for example, 

ELVRL = ERVLR (l) 

We thus have a set of nine parameters wl~ich are 
sufficient to characterize the linear elastidty of a given 
sample. 

To measure values of all nine constants for a given 
wood sample is a difficult undertaking [6]. There are 
a few complete sets of data from the days when spruce 
was of interest in aircraft construction [7, 8], and there 
is some interesting recent work investigating the use of 
ultrasonic methods for all nine constants [9], but 
nearly all the published data gives only a restricted 
subset. Most often, only EL, the long-grain stiffness, 
and ER, the cross-grain stiffness, are quoted. (Instru- 
ment makers prefer wood cut in the LR plane, so- 
called quarter-cut wood, so the T direction runs nor- 
mal to the surface of the finished soundboard.) 

The hope behind the present study is that this 
daunting measurement task might be reduced if we 
understood how the values of the nine constants arise 
from the internal structure of the material. It is at least 
conceivable that the relevant variations in growth 
from tree to tree of a given species might not actually 
involve very many free parameters, so that the induced 
variations in the macroscopic elastic constants are 
correlated in some way of which we might take ad- 
vantage. These underlying growth variations might 
affect the cell-wall elasticity or the cell geometry, but, 
in either case, to take advantage of any knowledge we 
would need to know how the cell-wall behaviour is 
linked to the macroscopic elasticity by the particular 
pattern of cell growth. Such understanding might also 
shed light on other questions, such as what influence 
on elastic behaviour should be expected from particu- 
lar growth anomalies in a tree, or what effects might 
arise from changing the wood microstructure by, for 
example, permanent deformation by bending the 
wood to a desired shape. 

The cellular structure of spruce is essentially quite 
simple [10]. The vast majority of the cells are tra- 
cheids, which run axially in the tree (in the L direction). 
They are needle shaped, with length-to-diameter ra- 
tios of the order of 15. The tracheids fit together to 
form an irregular honeycomb in the RT plane, whose 
properties are modulated in the radial direction by the 
annual growth rings. Spring growth produces large- 
diameter tracheids with thin walls, but as the growing 
season comes towards its close the cells become pro- 
gressively smaller in radial extent and thicker-walled, 
until growth stops. The following season growth re- 
sumes, giving an abrupt change of structure to the 

large, thin-walled spring-wood cells. The only cells in 
spruce which do not run axially form the rays. Ray 
cells are less substantial than tracheids, and they are 
aligned radially, cutting across the honeycomb of tra- 
cheids. One ray consists of a stack of about ten cells, on 
top of each other in the L direction, and only a single 
cell thick in the T direction. In Norway spruce, ray 
cellsmake up only about 2% of the total. In the living 
tree these cells transport fluids, but in well-seasoned 
wood, as studied here, they are empty. The cell walls 
form a honeycomb structure whose properties give 
wood its special attributes, both desirable and unde- 
sirable, as a material. 

Efforts to model this cellular structure to find its 
influence on the elastic properties go back to Price 
[11], who approximated the tracheid honeycomb by 
a close-packed array of circular tubes. This allowed 
him to explain immediately the very high anisotropy 
between EL and ER or Ex. To stretch the wood in the 
L direction requires extension in the cell walls, but 
a stretch in the R or T directions can be achieved by 
bending the walls without extension. Since they are 
thin, the associated macroscopic stiffness is much 
lower. More recently, Ashby and Gibson [12] ob- 
tained similar results from a rather more accurate 
model, in which the tracheids were represented by 
a two-dimensional honeycomb whose cross-section 
takes the form of a regular array of hexagons. 

The aim of the present study is to proceed one step 
beyond these previous investigations, by taking some 
account of the non-uniformity of the cell structure. 
This term covers the cell-by-cell variations of growth, 
and also the systematic modulation of properties con- 
sequent on the annual ring structure. An effort has 
been made to calculate all nine of the elastic constants 
for four spruce samples, based on a detailed study of 
the microstructure. Values for the cell-wall elastic con- 
stants have been taken from the literature, but in some 
cases we will argue that these values may not be 
accurate, at least for our samples. 

One specific issue to be examined is the source of 
anisotropy between ER and ET. Typical measured 
values suggest that ER/Ex is about 1.7 [7, 8]. Three 
different effects can be identified which contribute to 
this anisotropy, and we shall try to assess their relative 
importance. All three have been mentioned in pre- 
vious literature. First, Price E11] considered the role of 
the annual rings. It is intuitively clear that the relative- 
ly dense, stiff layers of summer wood will reduce the 
ratio ER: Ev and, if this were the only factor, would 
make this ratio lower than unity. Compression can 
occur in the R direction by bending only thin cell walls 
of the spring wood, but to achieve compression in the 
T direction the summer wood and spring wood must 
both be compressed. Put another way, the different 
properties of the spring wood and summer wood ap- 
pear in series for R-direction deformation, but in par- 
allel for T-direction deformation. Thus different aver- 
ages must be taken in the two cases; leading to differ- 
ent macroscopic stiffnesses. 

Clearly some other effect must compensate for this 
one, since it operates in the wrong direction. One such 
effect is the role of ray cells. Barkas [13] pointed out 
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Figure i Three typical configurations of hexagonal honeycomb as 
analysed by Ashby and Gibson [1, 12, 14]. 

that the radial ray cells will contribute additional 
stiffness in the R direction, with negligible influence on 
the T direction. The mechanism is essentially the same 
as that outlined above for the EL:ER anisotropy. The 
third influence on ER: ET is the effect of cell geometry 
in the RT plane, as discussed by Ashby and Gibson 
[1, 12]. Their theory treated any regular tesselation of 
hexagons, some examples being illustrated in Fig. 1. 
Most of these configurations will lead to anisotropy in 
the RT plane, the most extreme case being shown in 
Fig. lb. Here, it is possible to compress the material in 
one direction by cell-wall bending, but the walls are all 
aligned in the other direction so that macroscopic 
compression can only be achieved by local cell-wall 
compression. Obviously, a large anisotropy of 
Young's modulus will result. 

2. D e t e r m i n a t i o n  of  the  elast ic  
constants  

2.1. Preliminaries 
The cell wall is itself an anisotropic material, built up 
as a multi-layered composite of cellulose, hemicel- 
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lulose and fignin I-2, 10]. It should be noted that when 
we refer here to a cell wall, we mean one structural unit 
of the model as an irregular honeycomb. This unit 
actually consists of the walls of two adjacent cells, 
together with the layer of lignin holding them to- 
gether. This symmetric back-to-back structure makes 
it reasonable to assume that the whole unit is two- 
dimensionally orthotropic, so that its in-plane elastic 
properties may be specified by four elastic constants: 
two Young's moduli, one in-plane Poisson's ratio and 
the in-plane shear modulus. When treating the very 
thick-walled summer-wood cells, the Poisson's ratios 
relating to contraction through the thickness of the 
wall resulting from in-plane extension will also play 
a small role in the results. 

Values for all these elastic constants can be found in 
the literature, although some values are much more 
certain than others. To distinguish cell-wall constants 
from macroscopic constants for the wood, lower case 
letters will be used to indicate directions; thus E1 will 
denote the longitudinal Young's modulus of the cell 
wall, Et the transverse Young's modulus (which of 
course might be oriented anywhere in the RT plane in 
the wood), G~t the in-plane shear modulus, vlt the 
transverse Poisson contraction given an axial stretch, 
and (somewhat inconsistently) Vtr the Poisson contrac- 
tion through the thickness of the wall given a trans- 
verse in-plane stretch. Typical values cited for these 
constants, together with the density Ps of the solid 
cell-wall substance, are given in Table I. (Staypak is 
a material made by compressing wood under high 
temperature and pressure, which has a final density 
nearly as high as the value cited for the cell-wall 
substance. It gives the only direct measurements avail- 
able for Poisson's ratios.) Table I also gives suggested 
alternative values for some of the cell-wall constants 
based on this study; these values will be discussed in 
Section 3. 

We shall make extensive use of the honeycomb 
model of Ashby and Gibson, and of extensions to it 
using similar approximations of simple beam theory. 
It is useful to begin by summarizing the main results. 
For a unit cell, the necessary geometric notation is 
defined in Fig. 2a. The expressions given by Ashby 
et al. for the in-plane elastic constants are 

E m d 3 cos 0 
E x w3(h/w + sin 0)sin z 0 '  

Emd3(h/w + sinO) 
Ey = 

W 3 COS 3 0 

cos20 

vxy = (h/w + s in0)s in0 '  

(h/w + sin 0)sin 0 
Vy x 

COS 2 0 

Emda(h/w + sinO) 
a x y  = w 3 (h/w)2 (2h/w + 1) cos 0 (2) 

These equations assume a matrix with a Young's 
m o d u l u s  Em, and a deformation involving bending 
only (with no compression or shear). The coordinate 
directions are labelled x and y. These will correspond, 



T A B L E I Values of cell-wall properties from the literature 

Property Value from Source Suggested 
literature value 

p, 1500 kgm -3 [16], 1-2] 1500 kgm -3 
El 35 GPa [15] 40-50 GPa 
E t 10 GPa [15] 9 GPa 
G, 2.6 GPa 1-1] 3.5-4 GPa 
v~t 0.4 [2] (from Staypak) 0.5 
Vtl 0.15 I-2] (from Staypak) 0.1 
vt, 0.6 [2] (from Staypak) 0.6 

(a) 

where Vm is the matrix-material Poisson's ratio. Here, 
the term involving 2.4 + 1.5Vm allows for shear, while 
the term involving cot 2 0 allows for compression. 

The first step in using this theory for actual wood 
structures is to extend it to regular tesselations of 
non-symmetric hexagons. Fig. 2b shows a typical 
example, and Fig. 2c shows one unit from which the 
whole pattern may be built by repetition. Some further 
geometric notation is also defined in Fig. 2. Our pro- 
cedure, at least for the analysis in the RT plane, will be 
to represent the cell structure by a number of three- 
pronged elements as shown in Fig. 2c, each with its 
own values of the geometric parameters. 

The investigation begins with scanning electron 
microgaphs of the cell structure, sectioned in the RT 
plane. Two examples are shown in Fig. 3a and b, one 
from the spring wood, the other showing the summer 
wood and the sharp transition between two seasons' 
growth. Several rays can be seen crossing the micro- 
graphs horizontally. The spruce for the investigation 

(b) 

02 

W2 

(c) 

Figure 2(a) One structural unit of a honeycomb of the type shown 
in Fig. 1, with definitions of some geometric notation; (b) an 
example of a periodic honeycomb built from irregular hexagonal 
cells; (c) one structural unit of the honeycomb shown in (b), with the 
geometric parameters marked. 

broadly, to the directions R and T, respectively. 
Gibson [14] has also described extensions of this 
theory to allow for compression and shear. A typical 
result, which will be of direct interest to us, as will be 
seen in the next subsection, is 

Em d3 c o s 0  

Figure 3 Scanning electron micrographs of the RT plane in one of 
the samples of Norway spruce analysed in this study: (a) early- 
spring growth; (b) the transition through the summer growth of one 
annual ring. The T direction runs parallel to the annual ring and the 
R direction runs approximately horizontally, the growth direction 
of the tree being from left to right. 

Ex = 
w3(h/w 4- sin 0)sin 2 0[1 + (2.4 + 1.5V m -k- co t  2 0 ) ( d / w )  2] 

(3) 
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was obtained from a violin-maker's workshop, so that 
all the samples were straight grained, knot-free and 
well seasoned. For each sample, a montage of micro- 
graphs was prepared which allowed detailed analysis 
to be carried out for a strip which was one complete 
annual ring in radial extent and 15 cells wide in the 
T direction. These strips each contained 500-700 cells. 

The geometric parameters for each three-pronged 
element within the analysed strips were measured 
from the micrographs, and entered into a computer to 
facilitate the processing required. The Ashby/Gibson 
theory can be used to predict the elastic properties of 
each element, then appropriate averaging procedures 
can be applied to aggregate the results into macro- 
scopic elastic constants. The objective is not to model 
the behaviour of the irregular structure with complete 
accuracy, but to use approximations which capture 
the main effects so that their influence may be as- 
sessed. 

2.2. The Young's moduli 
We first discuss the Young's moduli in the three prin- 
cipal directions. The easiest to calculate, within the 
simple theory in use here, is EL. For this, we need only 
find the fraction of the cross-sectional area in the 
micrographs which is occupied by wood substance 
rather than empty space. The value of EL is then the 
cell-wall modulus E~ multiplied by this fraction, since 
the assumption is that axial loads are carried by com- 
pressive force in all the tracheid tubes. Equivalently, 
we may multiply E~ by the relative density of the wood 
compared with that of wood substance, provided we 
neglect the ray cells which will contribute to the mass 
but not to the axial load-bearing capacity. 

To obtain the other two Young's moduli, E ,  and 
ET, requires more work. It is immediately clear from 
Fig. 3 that the two cases are rather different. There is 
a strong degree of cell alignment in the R direction, 
whereas the cells are randomly staggered in the T di- 
rection. This is a consequence of the normal pattern of 
tree growth, in which each tracheid in the outermost 
layer divides to produce another alongside it, forming 
a new outer layer. It is reasonable to suppose that 
a load in the R direction will be carried along zig-zag 
lines like the one labelled R line in Fig. 4, which is 
a diagrammatic version of Fig. 3a. In each line, the 
deformation will involve a combination of bending 
and compression in the segments of the zig-zag. The 
sections of cell wall oriented in the T direction will 
contribute very little to the overall stiffness, and they 
will be ignored in the calculation. When we come to 
calculate ET, on the other hand, a rather more artifi- 
cial concept of the T lines is needed. An example is 
indicated in Fig. 4. It is made up of a column of 
three-pronged elements, each analogous to Fig. 2c. 
A load in the T direction will be carried through the 
set of such columns, by a combination of bending in 
the cell walls which form part of the R lines, and 
compression in the other walls. 

For both cases, the same general procedure may be 
followed. The lines are assumed to be free to move 
independently. Any relative motion between adjacent 

1254 

T line 

Figure 4 A diagrammatic version of Fig. 3a, showing a typical 
T line and a typical R line, as described in the text. 

lines will be accommodated by bending and shear 
deformation in the cross-links, but we expect this to 
contribute very little to the overall stiffness, since in 
both cases adjacent lines are generally sufficiently sim- 
ilar that such relative motion will be quite slight. We 
now imagine the whole sample under a uniaxial load 
in the relevant direction. Each line will carry a fraction 
of the applied load, which will be constant along the 
line; the motion of each element will adjust itself ac- 
cording to its own stiffness. The distribution of force 
between the different lines, though, is governed by 
a condition of equal displacement, if we imagine a test 
in which the sample is compressed between flat, rigid 
platens. Thus an appropriate way to combine the 
stiffnesses of the individual three-pronged elements is 
a combination of a series connection (along the lines) 
and a parallel connection (between lines). 

This procedure is readily carried through, using the 
measured data on each element in a given sample. It 
transpires that the strong alignment of cell walls in the 
R direction leads to a considerable fraction of the load 
in that direction being carried by compression rather 
than bending. The corrected formula (3) is thus essential 
to obtain sensible results for this case, although the 
allowance for shear also included in this formula has 
only a small effect, and can be omitted. In the T direc- 
tion there is also some effect of compression (in the 
walls running vertically in Fig. 2), but the overall 
stiffness is governed primarily by bending in the other 
walls, so that no great error is made by omitting it. 

Note that the effect of rays is automatically included 
in the analysis just described, at least up to a point. 
Where a ray cell is visible in a micrograph, its wall 
thickness and influence on cell alignment is included 
in the measurements of individual structural elements. 
The only error as a consequence of this is that  we use 
the transverse material properties of tracheid walls in 
calculating stiffnesses from the geometric measure- 
ments, whereas we should use the (presumably differ- 
ent) axial material properties of ray-cell walls. But the 
number of rays in spruce is so small in relation to the 
number of tracheids that only a very small error will 
result in the macroscopic predictions. 

There is one further issue to be considered in rela- 
tion to ER and ET, which is whether the simple procedure 



just described copes adequately with the thicker- 
walled cells of the summer wood. The relative density 
there is often around 0.5, which is more suggestive of 
a solid material with inclusions than of a structure of 
thin beams. The implications of this raise rather separ- 
ate issues for ER and ET. When calculating ER, we 
should consider the role of Poisson's ratio, which 
varies significantly across an annual ring. This will be 
addressed in detail in the next subsection. 

When the simple theory is applied to calculate ET, 
a single line in the summer-wood area is predicted to 
be some 10-20 times stiffer than a line in the spring- 
wood area, and the summer wood contributes up to 
80-90% of the total stiffness. This makes it imperative 
to treat this area carefully, and not to rely on inappro- 
priate approximations chosen because they work well 
enough for the spring wood. A particular problem 
concerns the estimation of the cell-wall thickness in 
the summer wood. Careful examination of micro- 
graphs reveals that the wall thickness is quite variable 
in this area (a variation by a factor of two within one 
wall has been observed), and that defects such as 
cracks and voids are quite common (perhaps as a re- 
sult of the drying during seasoning of the wood). 
When such a high proportion of the load is carried by 
this area of the structure, any such weak links in the 
chain of transmission could produce a very significant 
reduction in the overall stiffness. 

For the purposes of this study, it was decided to 
allow for such effects by the rather crude method of 
assigning an equivalent thickness to the cell walls in the 
summer-wood area when calculating stiffnesses. The 
value chosen for this in the sample shown in Fig. 3 was 
4.5 Ixm, compared with 3.1 .lttm measured in the early- 
spring wood, and 3.6 Ixm in the later-spring wood. 
Some support for this approach, and for the values 
chosen, has been obtained by two methods. First, the 
pattern of deformation was observed when the sum- 
mer wood was deformed dynamically inside a scan- 
ning electron microscope, and the important role of 
weak links was then evident. Secondly, the calcu- 
lations to be described in the next section give inde- 
pendent estimates of ER, ET, VRT and VTR , which de- 
pend on this choice of equivalent thickness. The recip- 
rocal relation between the four quantities then gives 
a check on the self-consistency of the modelling. 

2.3. The RT-plane Poisson's ratios 
Of the two RT-plane Poisson's ratios, VTR is easier to 
estimate than VaT. When the Ashby/Gibson theory, 
suitably corrected for compression effects [14], is ap- 
plied to regular honeycombs based on the individual 
three-pronged elements of the spruce structure, wide 
variations in Poisson's ratio across the annual ring are 
predicted. In the early-spring wood, values approach- 
ing or even exceeding unity are found for VaT. (Recall 
that in a two-dimensional structure there are no theor- 
etical constraints on the value of Poisson's ratio, and 
any positive or negative value is possible in principle.) 
In the late-spring wood, values around 0.5 are com- 
mon, while, in the summer wood, values as low as 0.2 
are found. These last values are probably rather too 

l o w - t h e  measurements on Staypak given in Table 
I indicate that solid-wood substances have a Poisson's 
ratio of around 0.6 in the transverse plane. As has 
already been noted, summer wood approaches the 
condition of being a solid with small inclusions, so the 
value from the Ashby/Gibson theory should probably 
be increased. We will return to this question in Section 
3, when numerical results are discussed. 

In any case, the variations across the annual ring 
must be allowed for. If we imagine a uniform com- 
pressive strain imposed in the T direction, these vari- 
ations do not cause any problem. Each layer of ceils 
(parallel to the rings) has an approximately uniform 
structure, so they will exhibit a Poisson expansion 
governed by the local properties. The overall expan- 
sion is simply the sum of the expansions in each layer, 
so that a reasonable estimate of VTR should be ob- 
tained by a Simple average. 

Things are different when we took at VRT. The 
long-range constraints exerted by the annual-ring 
structure must be allowed for in combining the indi- 
vidual values to give a macroscopic result. When 
a strain is imposed in the R direction, the different 
layers will expand in the T direction by different 
amounts, and the compromise which results must be 
calculated by a different style of argument from that 
used so far. Of course, we could simply use the recipro- 
cal relation to evaluate VaT, given that we already have 
estimates of VTa, Ea and ET. But it is instructive, and 
a useful check on the other calculations, to find a way 
to make a direct estimate of VRT. 

A simple approach to this problem utilises the 
variational principle for elasticity. We may model an 
annual ring adequately for this purpose by a structure 
with several discrete layers, each being assumed uni- 
form in its properties. We may then impose a specified 
total strain in the R direction, and calculate that strain 
in the T direction which minimizes the total strain 
energy. This calculation will also improve the estimate 
of ER discussed in the previous subsection, since it too 
is influenced by the constraining effect of the layer of 
dense summer wood. We have chosen to use a three- 
layer model, corresponding to the early-spring wood, 
late-spring wood, and summer wood. Of course, the 
boundaries between these regions are not sharp in 
most cases but the approximation seems to produce 
reasonable results. 

Consider first a homogeneous, two-dimensional, or- 
thotropic material with principal axes in directions 
which we may label x and y. It will have Young's 
moduli Ex and Er, and Poisson's ratios vxy and vrx. 
For  a deformation involving strains ex and ~y along 
the principal directions, with no shear, the strain en- 
ergy density is [8] 

E ~  2 + Ey132y 4- 2VyxEx8x~y 
V = (4) 

2ix 

where Ix = 1 - v~yvy~. This may be readily extended 
to the three-layer model shown in Fig. 5, in which the 
properties in the three regions are distinguished by 
superscripts (1), (2) and (3), respectively. The lengths of 
the regions, a <1), a (2) and a (3), are specified as fractions 
of the total length, so that a ~1) + a <2) + a ~3) = 1. We 
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Region 1 
Early-spring 

wood 

Region 2 
Late-spring 

wood 

Region 3 
Summer 
wood 

a 0 ) a (2) 8(3) 

Figure 5 The three-layer model used to analyse the constraining 
effect of the annual ring on motion in the RT plane. The total width 
covers one annual ring. 

can impose a total strain s~. We do not know a priori 
how this is partitioned into the strains e~ ~), s~ 2) and 
s(= 3) in the separate regions, but we must have 

a(1)e(= 1) + a(2)~; (2) + a(3)g (3) = S x (5) 

Since we are considering deformation in the interior of 
a large specimen (compared with the ring spacing), the 
transverse strain, ey, resulting from Poisson's-ratio 
effects must be the same in all regions. So the total 
strain-energy density is 

~tT(1) ~(1) 2 p ( i ) ~ ( 1 ) 2  9x~ (1) ]C?(1) r 

V = ~*' ~" + + 
~ y  ~ y  ~ V y x  ~ X  ~ X  ~ y  

2g(1) 

E(2)g(x2)2 + V.(2)~ '(2)2 .Jr_ 9, ,(2) b'(Z)r 
~ y  ~ y  ~ y x  ~ X  ~ X  ~ y  + 

2t.t (2) 

F(a ) r  "~v (3) ~/~(3)r r E(x3)C (3)2 "d- - -y  ~.v + - - y x  ~ x  ox  ~y 
+ 

2g(3) 

(6) 
(1) o(2) This must be minimized with respect to ex , ~ , 

e~ 3) and gy, subject to the constraint of Equation 5. In 
terms of a Lagrange multiplier, X, we require that 

~s(1) [ V + X(a(t)e(= a) + a{2)s~ ) + a(3)g(x3))] 

~s~) [ V + )~(aO)s(= 1) + a(Z)e~ ) + a(3)s(=3))] 

~e(a) I V  + s 1) + a(E)e(= 2) + a(3)g(x3))] 

= 0 

(7) 

= 0 

(s) 

= 0 

(9) 

and 

8 
- - I V  + ~.(a(1)g(xl) + a(Z)gix2) + a(a)8(x3))] = 0 

(10) 

These equations together with the constraint of Equa- 
tion 5 give a set of five linear equations from which 
2 may be eliminated, and which may then be solved for 
4 " ,  (2, &, s= , and e r in terms of the specified ~=. The 
algebraic expressions are not worth displaying, but 
numerical results will be given in Section 3. The de- 
sired Poisson's ratio is now given by 

VaT - - gr/ex (11) 

since we have identified the directions in the following 
way: x = R, y = T. If the results are substituted back 
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into the strain energy density Equation 6, so that it 
takes the form 

v = � 8 9  (12) 

then the coefficient E* is an improved estimate for ER. 

2.4.  The shear modul i  
The final elastic constant relating to the RT plane is 
the shear modulus GRT. This is governed by cell-wall 
bending to a very good approximation, and no correc- 
tion for shear or compression need be employed in 
calculating the shear stiffness of each individual ele- 
ment in the structure. To aggregate these into a mac- 
roscopic shear modulus involves a similar procedure 
to that employed for the Young's moduli. We may 
imagine imposing a shear deformation between two 
platens which lie parallel to the LR plane and which 
are moved relative to one another along the R axis. It 
seems reasonable to suppose that the strong alignment 
of cell walls in the R direction produces something 
approaching a constant-displacement constraint 
along each R line. So the individual values of shear 
stiffness of the cell units along each R line should be 
combined by a simple arithmetic mean, then the lines 
are combined by a harmonic mean. 

The other two shear moduli depend on th.e shear 
modulus of the cell-wall material. If a shear deforma- 
tion is imposed in, for example, the LR plane, this will 
be resisted primarily by shear deformation in the cell 
walls aligned roughly in the R direction. The precise 
three-dimensional pattern of response will also no 
doubt involve some cell-wall bending, but the stiffness 
for bending is so much smaller than for in-plane shear- 
ing that  one would expect it to contribute negligibly to 
the macroscopic shear modulus. To produce simple 
estimates for GLR and GET, we will assume a rectangu- 
lar geometry for the honeycomb of tracheids. This 
would be stiffer than the actual structure, with its 
staggered cells, so that we will overestimate the shear 
modulus (for a given assumed value of the cell-wall 
shear modulus). But it is hard to see how else to 
proceed, since there is no theory for the three-dimen- 
sional deformation of a honeycomb as simple as that 
which was used earlier in two dimensions (see the 
discussion (in section 4.5) by Gibson and Ashby [1]). 
With this assumption, it is simple to produce estimates 
for the shear stiffness of individual cells for shear in the 
LR and LT planes. These could be aggregated in the 
same manner described above for GR~, but since we 
are calculating an upper bound based on rather crude 
modelling, a simple average of individual values seems 
equally valid within the expected limits of accuracy. 

2.5. The remaining Poisson's ratios 
Finally, we consider the Poisson's ratios which involve 
the L direction. For  an imposed compressive strain in 
the L direction, the simple model we are using predicts 
that the Poisson expansions in the R and T directions 
will be simply that of a solid-wood substance, vlt. It 
makes no difference that the structure has axial holes 
in it, since each cell wall will expand by the same 



factor, and the entire honeycomb pattern expands 
without distortion. The only exception to this argu- 
ment, within the approximations we have used 
throughout, comes from the ray cells. These will pro- 
vide a small degree of additional stiffening of the 
R direction, and perhaps reduce the Poisson expan- 
sion in that direction. But, in any case, the value for 
the cell-wall Poisson's ratio is quite uncertain, and it is 
far from clear that all cells should be assigned the same 
value. The thicker walls of the summer-wood cells 
might well have a different detailed structure of layers 
and winding angles, but there is insufficient data avail- 
able to incorporate any such effects in theoretical 
models. By comparison with this uncertainty, the ef- 
fect of stiffening by rays is probably quite minor for 
spruce (with its very small proportion of ray cells). 

When a compressive strain is imposed in the R or 
T direction, a slightly different argument is needed. 
Bending of cell walls in the RT plane produces no 
strain in the L direction. The Poisson expansion is 
associated entirely with the compressive component of 
deformation in the RT plane, via the Poisson's ratio 
vt~ of the cell wall. The cell-wall compression has 
already been calculated, in the course of estimating 
ER and ET. An average over all cells of the respective 
Poisson expansions implied by this argument yields 
macroscopic estimates of VRL and VTL. 

3. Numerical  results and discussion 
When the estimation methods just described are ap- 
plied, using the first set of cell-wall properties given in 
Table I, the results for the spruce sample illustrated in 
Fig. 3 (sample 1) are as li~ted in Table II under the 
heading First estimate. We will discuss these results in 

relation to the values expected from earlier measure- 
ments, and the comparison will lead us to suggest 
modifications to the cell-wall properties. These modi- 
fied values are then applied to all four spruce samples 
analysed, the results are shown in Table II. It would 
have been desirable to measure the elastic properties 
of the actual spruce samples studied here, but that was 
unfortunately not possible. So the predicted values are 
compared with results given by Carrington [7]. He 
gives values for five samples, and we reproduce one 
typical set and the range for each constant in Table II. 

We now compare the first-estimate values with Car- 
rington's results in Table II. First, we see that the 
predicted value of EL is rather low. Within the theory 
used here, there is a direct proportionality between 
EL and the density, and we have a value of density 
which lies well within Carrington's range. We con- 
clude that the factor of proportionality, which is gov- 
erned by the cell-wall axial modulus, Et, must be too 
small. The value 35 GPa  for El in Table I was given by 
Cave [15] and it has been adopted by numerous 
subsequent authors. But if we look at the relationship 
between density and EL in Carrington's data, we con- 
clude that a better value for E1 lies in the range 
40-50 GPa. 

The predicted values of ER and ET are within Car- 
rington's range, although they are a little on the high 
side. A slightly reduced value for the cell-wall trans- 
verse modulus, Et,  of 9 GPa  gives a better fit, and we 
tentatively suggest this value for our samples. The 
value of Ea is based on the three-layer model described 
in Section 2.3, which deserves a little more comment. 
For the spruce sample studied here, the averaged 
parameters determined for the three layers using the 
Ashby/Gibson theory are listed in Table III. It has 

T A B L E I I Predicted and measured elastic constants and density for spruce 

Constant  First Typical Range 
estimate results 

(Carrington [7]) 

Best estimates 

Sample 1 Sample 2 Sample 3 Sample 4 

p (kg m -3) 400 430 370-..500 
EL (GPa) 9.3 13.5 9.9-16.6 
ER (GPa) 0.91 0.89 0.64-0.89 
Er (GPa) 0.56 0.48 0.39-0.69 
GRr (GPa) 0.027 0.032 0.022-0.037 
GRt (GPa) 1.01 0.72 0.50-0.72 
GrL (GPa) 1.03 0.50 0.50-0.84 
VRr 0.32 0.56 0.43-0.64 
V'rR 0.30 0.30 0.25-0.33 
VRL 0.057 0.030 0.018 -0.031 
VI.R 0.4 0.45 0.36-0.45 
VTL 0.047 0.019 0.013 --0.023 
VLT 0.4 0.54 0.38 0.56 

400 400 430 440 
12.0 11.9 12.9 13.2 
0.79 0.74 0.71 0.82 
0.50 0.46 0.53 0.69 
0.027 0.029 0.050 0.042 
0.58 0.61 0.66 0.61 
0.59 0.60 0.66 0.70 
0.44 0.51 0.51 0.43 
0.29 0.29 0.30 0.27 
0.028 0.030 0.024 0.035 
0.4 0.4 0.4 0.4 
0.0I 9 0.019 0.013 0.027 
0.4 0.4 0.4 0.4 

T A B L E 111 Parameters for the three-layer model 

Region Length proportion, a ER/E, E~/E, vat vrR la 

1 :early-spring wood 0.58 0.072 0.018 0.772 0.269 0.83 
2: late-spring wood 0.30 0.098 0.044 0.529 0.231 I).85 
3: summer  wood 0.12 0.163 0.274 0.091 0.165 0.97 
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already been noted that the Poisson's ratio for the 
summer wood (region 3) is probably too low, so the 
influence of this Poisson's ratio on the predicted mac- 
roscopic results was investigated. One useful indicator 
is the accuracy with which the reciprocal relation 

ERVTR = ETVRT (13) 

is satisfied. We may evaluate both sides of this equa- 
tion with any assumed value of VRT" ~3) for the summer 
wood, with results as given in Table IV. This suggests 

~3) in the that we use a value of around 0.5 for VRT 
summer-wood area, which is quite in keeping with the 
measured value from Staypak given in Table I. 

The other anomalies to note in this first comparison 
between theory and measurements concern the shear 
moduli and Poisson's ratios which involve the L direc- 
tion. As was explained in Sections 2.4 and 2.5, these 
are heavily dependent on cell-wall properties for 
which reliable measurements do not exist. The values 
from the literature given in Table I were determined 
by data fits to macroscopic behaviour, and there is no 
reason to believe them to be more accurate than the 
calculations carried out here. We thus suggest that our 
modelling be used to give amended values for those 
properties, at least for our spruce samples. The sugges- 
ted values are given in the last column of Table I. 

Using the set of cell-wall properties as amended by 
the first comparison, the full set of elastic constants for 
the four spruce samples studied are given in the four 
final columns of Table II. The level of agreement with 
Carrington's data now seems entirely satisfactory. 

One aspect of the results remains to be discussed. In 
Section 1, we discussed three possible sources of an- 
isotropy between ET and ER. NOW that we have 
models for both constants which reproduce that an- 
isotropy with reasonable accuracy, we can use them to 
examine the three effects which have been suggested to 
account for it. At least for our particular samples, the 
answer is as follows. The annual-ring structure has an 
influence of the kind described, tending to make 
ET > ER. The summer wood accounts for some 50% 
of the T-direction stiffness, while occupying only 
10-15% of the area. (Of course, wood with different 
growth patterns might show quite different results.) 

The effect of rays is rather different in detail from 
the description advanced by Barkas [-13]. The rays do 
indeed have an effect of additional stiffening in the 
R direction, but not so much from the radial align- 
ment of their own walls as from the alignment they 
induce in the walls of the neighbouring tracheids. In 
general, an R line containing a ray is about 50-100% 
stiffer than a "normal" line. Since the two sides of a ray 
which is intersected in the analysed section contribute 
separate lines, the net effect is that putting a ray 

(3) T A B L E  IV The effect of varying VRT 

(3) ER/E t E.r/Et VRT VTR VTRER/Et VRTET/Et V RT 

0.1 0.091 0.056 0.32 0.25 0.023 0.018 
0.5 0.087 0.056 0.44 0.29 0.025 0.025 
0.8 0.086 0.056 0.52 0.32 0.028 0.029 
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between two rows of tracheids yields a combined 
stiffness three or four times higher than the zig-zag line 
without the ray. Given the typical spacing of rays in 
our specimens, we can say that perhaps 25-50% of the 
radial stiffness is due to rays in this sense. This is of 
about the same order of magnitude as the effect of 
annual rings in stiffening the T d i rec t ion- the  two 
effects approximately cancel one another out in these 
particular samples. 

The third effect, from the geometry of the honey- 
comb, is therefore of about the right magnitude to 
provide the observed anisotropy, of rather less than 
a factor of two. In detail, it turns out that in the spring 
wood a typical R line is some 3-5 times stiffer than 
a typical T line, but the local anisotropy decreases 
through the late-spring wood into the summer wood, 
the aggregate values giving the observed effect. 

4. Conclusions 
Simple predictive models have been constructed for all 
the elastic constants of spruce, regarded on a macro- 
scopic scale as an orthotropic (orthorhombic) con- 
tinuum. At the cellular level, spruce is modelled as an  
irregular honeycomb of tubes. The actual geometry 
was measured for samples of 500-700 individual cells 
in four separate specimens of Norway spruce. Local 
elastic properties were deduced from the geometry of 
each structural element, and suitable procedures were 
devised for aggregating these into macroscopic elastic 
constants. In some cases these were simple averaging 
procedures, but in others the long-range constraining 
effect of the annual-ring structure was allowed for by 
a variational calculation. The results were compared 
with published measurements of the elastic constants 
of spruce, and it was argued that the only significant 
anomalies might result from inadequacies in the data 
on the cell-wall properties. Revised values have been 
suggested for certain of these properties, for our par- 
ticular samples, and when these were used very satis- 
factory agreement was achieved between the predic- 
tions for all four samples and the previous measure- 
ments. 
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